题目内容
13.对于x∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$≥16恒成立,则正数p的取值范围为( )A. | (-∞-9) | B. | (-9,9] | C. | (-∞,9] | D. | [9,+∞) |
分析 $\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$=($\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$)(sin2x+cos2x),展开利用基本不等式求出其最小值,让最小值大于等于16得到关于p的不等式,求出解集即可.
解答 解:$\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$=($\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$)(sin2x+cos2x)=1+p+$\frac{psi{n}^{2}x}{co{s}^{2}x}$+$\frac{co{s}^{2}x}{si{n}^{2}x}$
≥1+p+2$\sqrt{p}$=($\sqrt{p}$+1)2,
所以由不等式$\frac{1}{si{n}^{2}x}$+$\frac{p}{co{s}^{2}x}$≥16恒成立,得($\sqrt{p}$+1)2≥16
所以p≥9
故选:D.
点评 此题是函数恒成立的问题,并考查利用基本不等式求出其最小值的方法,利用“1”的代换是关键.
练习册系列答案
相关题目
3.已知-$\frac{π}{4}$<α<$\frac{3π}{4}$,sin($\frac{π}{4}$-α)=$\frac{\sqrt{5}}{5}$,则sinα=( )
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{3}}{3}$ |
5.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫做函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是( )
A. | (-$\frac{1}{2}$,$\frac{3}{2}$) | B. | (-$\frac{3}{2}$,$\frac{1}{2}$) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
2.已知椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$的焦点为F1,F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于点P,则∠F1PF2为钝角的概率为( )
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |