题目内容
17.已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R且α+β>0,β+γ>0,γ+α>0,试说明f(α)+f(β)+f(γ)的值与0的大小关系.分析 由条件利用函数的单调性可得f(α)<-f(β),f( β)<-f(γ ),f(γ)<-f(α ),再利用函数的奇偶性可得f(α)+f(β)+f(γ)<0.
解答 解:由奇函数f(x)在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R且α+β>0,β+γ>0,γ+α>0,
可得α>-β,β>-γ,γ>-α,
∴f(α)<f(-β),f( β)<f(-γ ),f(γ)<f(-α ),
即 f(α)<-f(β),f( β)<-f(γ ),f(γ)<-f(α ),
相加可得f(α)+f(β)+f(γ)<-[f(α)+f(β)+f(γ)],
可得f(α)+f(β)+f(γ)<0.
点评 本题主要考查函数的奇偶性和单调性的应用,属于基础题.
练习册系列答案
相关题目
7.已知A={x|1≤x≤5},B={x|(x-a+1)(x-a-1)≤0},条件p:x∈A,条件q:x∈B,若?p是?q的充分不必要条件,则实数a的取值范围是( )
A. | (2,4] | B. | [2,4] | C. | [2,4) | D. | (2,4) |
6.已知条件p:-3≤x<1,条件q:x2+x<a2-a,且p是q的必要不充分条件,则a的取值范围是( )
A. | [-1,$\frac{1}{2}$] | B. | [-1,2] | C. | [$\frac{1}{2}$,2] | D. | [-1,$\frac{1}{2}$]∪[2,+∞) |