题目内容

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

【答案】(1);(2)

【解析】

1)将直线的极坐标方程化为普通方程,利用点到直线距离公式构造出距离关于参数的三角函数关系式,利用三角函数值域可求得的最小值;(2)根据点在直线右下方可得:;利用辅助角公式进行整理可得,从而利用三角函数范围得到关于的不等式,从而求得范围.

(1)由,得到

直线普通方程为:

,则点到直线的距离:

时,

到直线的距离的最小值为

(2)设曲线上任意点,由于曲线上所有的点都在直线的右下方,

对任意恒成立

,其中.

从而

由于,解得:

即:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网