题目内容
如图,与都是边长为2的正三角形,
平面平面,平面,.
(1)求点到平面的距离;
(2)求平面与平面所成二面角的正弦值.
,
解法一:(1)等体积法.
取CD中点O,连OB,OM,则OB=OM=,OB⊥CD,MO⊥CD.
又平面平面,则MO⊥平面,所以MO∥AB,MO∥平面ABC.M、O到平面ABC的距离相等.
作OH⊥BC于H,连MH,则MH⊥BC.
求得OH=OC•=,
MH=.
设点到平面的距离为d,由得.
即,
解得.
(2)延长AM、BO相交于E,连CE、DE,CE是平面与平面的交线.
由(1)知,O是BE的中点,则BCED是菱形.
作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.
,
,.
则所求二面角的正弦值为
解法二:取CD中点O,连OB,OM,则
OB⊥CD,OM⊥CD.又平面平面,则MO⊥平面.
取O为原点,直线OC、BO、OM为x轴、y轴、z轴,建立空间直角坐标系如图.OB=OM=,则各点坐标分别为C(1,0,0),M(0,0,),B(0,,0),A(0,-,).
(1)设是平面MBC的法向量,则,.
由得;
由得.
取.,则
.
(2),.
设平面ACM的法向量为,由得解得,,取.又平面BCD的法向量为.
所以,
设所求二面角为,则.
取CD中点O,连OB,OM,则OB=OM=,OB⊥CD,MO⊥CD.
又平面平面,则MO⊥平面,所以MO∥AB,MO∥平面ABC.M、O到平面ABC的距离相等.
作OH⊥BC于H,连MH,则MH⊥BC.
求得OH=OC•=,
MH=.
设点到平面的距离为d,由得.
即,
解得.
(2)延长AM、BO相交于E,连CE、DE,CE是平面与平面的交线.
由(1)知,O是BE的中点,则BCED是菱形.
作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.
,
,.
则所求二面角的正弦值为
解法二:取CD中点O,连OB,OM,则
OB⊥CD,OM⊥CD.又平面平面,则MO⊥平面.
取O为原点,直线OC、BO、OM为x轴、y轴、z轴,建立空间直角坐标系如图.OB=OM=,则各点坐标分别为C(1,0,0),M(0,0,),B(0,,0),A(0,-,).
(1)设是平面MBC的法向量,则,.
由得;
由得.
取.,则
.
(2),.
设平面ACM的法向量为,由得解得,,取.又平面BCD的法向量为.
所以,
设所求二面角为,则.
练习册系列答案
相关题目