题目内容
【题目】已知函数
(1)求函数的单调递增区间;
(2)将函数的图像向左平移个单位后,再将图像上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图像,求的最大值及取得最大值时的的集合.
【答案】(1)(2)
【解析】试题分析:(1)根据二倍角公式进行化简,得到 ,根据正弦函数的性质,可知 ,进而得到函数 单调递增区间;(2)由已知,可得 ,根据正弦函数的性质,可知当 ,即 取得最大值,进而得到当取得最大值时的 的取值集合.
试题解析:(1)
当即
因此,函数的单调递增区间为
(2)由已知,
当即,也即时,
当的最大值为
【方法点晴】本题主要考查三角函数的单调性、三角函数的图象的变换以及三角函数的最值,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.
【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:
分 组 | 频 数 | 频 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合计 | 50 | 1.00 |
(1)将上面表格中缺少的数据填充完整.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率.
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.