题目内容
如图,抛物线
的顶点为坐标原点
,焦点
在
轴上,准线
与圆
相切.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115566534747.png)
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
和抛物线
交于点
,命题P:“若直线
过定点
,则
”,请判断命题P的真假,并证明。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556560292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556575302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556591310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556607280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556622550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115566534747.png)
(Ⅰ)求抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
(Ⅱ)已知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556685337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556716415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556685337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556763428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556778619.png)
(Ⅰ)
(Ⅱ)命题P为真命题
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556794520.png)
试题分析:(Ⅰ)依题意,可设抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556825823.png)
其准线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556607280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556856573.png)
∵准线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556607280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556622550.png)
∴所以圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556903421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556607280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556934830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556950421.png)
故抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556794520.png)
(Ⅱ)命题P为真命题
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556685337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556716415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556763428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556685337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557090312.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557090638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557106881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556544313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011556794520.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557153623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557168738.png)
由韦达定理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011557184751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115571991416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240115572151112.png)
点评:本题考查了抛物线方程的求法,以及直线与抛物线的位置关系判断,做题时要认真分析,避免不必要的错误.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目