题目内容

已知动点p(x,y)在椭圆
x2
25
+
y2
16
=1上,若A点坐标为(3,0)|
AM
|=1且
PM
AM
=0,则|
PM
|的最小值是
 
分析:根据
PM
AM
=0推断出
PM
AM
,进而利用勾股定理可知|PM|2=|AP|2-|AM|2,进而问题转化为求得|AP|最小值,但点A到椭圆的右顶点时|AP|最小,进而求得|
PM
|的最小值.
解答:解:∵
PM
AM
=0
PM
AM
 
∴|PM|2=|AP|2-|AM|2
∵|AM|2=1
∴|AP|越小,|PM|越小,
|AP|最小是5-3=2,
∴|PM|最小是
4-1
=
3

故答案为:
3
点评:本题主要考查了椭圆的简单性质和平面向量的几何意义.考查了学生综合分析问题和推理能力以及数形结合的思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网