题目内容

在△ABC中,|
AB
|=4
|
AC
|=2
,D是BC边上一点,
AD
=
1
3
AB
+
2
3
AC

(1)求证:∠BAD=∠CAD;
(2)若|
AD
|=
6
,求|
BC
|
的值.
证明:(1)设
AE
=
1
3
AB

ED
=
AD
-
AE
=
1
3
AB
+
2
3
AC
-
1
3
AB

ED
=
2
3
AC

又∵|
AB
|=4

|
AE
|=
4
3
|
ED
|=
2
3
•2=
4
3

又由EDAC,
可得∠BAD=∠EDA=∠CAD
(2)由|
AD
|=
6

6=|
AD
|2=(
1
3
AB
+
2
3
AC
)2=
1
9
•16+
4
9
AB
AC
+
4
9
•4
AB
AC
=
11
2

|
BC
|2=(
AC
-
AB
)2=4-2
AC
AB
+16=9
BC
=3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网