题目内容
已知,求证:.
【解析】本试题主要是考查了不等式的证明,利用分析法进行变形化简并证明。
证明:
设函数f(x)=在[1,+∞上为增函数.
(1)求正实数a的取值范围;
(2)比较的大小,说明理由;
(3)求证:(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立
∴ax-1≥0对x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上为增函数,
∴n≥2时:f()=
(3) ∵ ∴
已知各项都不为零的数列的前n项和为,,向量,其中N*,且∥.
(Ⅰ)求数列的通项公式及;
(Ⅱ)若数列的前n项和为,且(其中是首项,第四项为的等比数列的公比),求证:.
【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。
(1)因为,对n=1, 分别求解通项公式,然后合并。利用,求解
(2)利用
裂项后求和得到结论。
解:(1) ……1分
当时,……2分
()……5分
……7分
……9分
证明:当时,
当时,
已知数列满足且对一切,
有
(Ⅰ)求证:对一切
(Ⅱ)求数列通项公式.
(Ⅲ)求证:
【解析】第一问利用,已知表达式,可以得到,然后得到,从而求证 。
第二问,可得数列的通项公式。
第三问中,利用放缩法的思想,我们可以得到
然后利用累加法思想求证得到证明。
解: (1) 证明:
【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,圆与圆内切于点,其半径分别为与,
圆的弦交圆于点(不在上),
求证:为定值。
B. 选修4-2:矩阵与变换
已知矩阵,向量,求向量,使得.
C.选修4-4:坐标系与参数方程
在平面直角坐标系中,求过椭圆(为参数)的右焦点且与直线(为参数)平行的直线的普通方程。
D.选修4-5:不等式选讲
解不等式:
已知正方体ABCD-A1B1C1D1,
O是底面ABCD对角线的交点.
(1)求证:A1C⊥平面AB1D1;
(2)求.
【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:即可.
(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则就是直线AC与平面AB1D1所成的角.然后解三角形即可.