题目内容

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答

             若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.

A选修4-1:几何证明选讲

   如图,圆与圆内切于点,其半径分别为

的弦交圆于点不在上),

求证:为定值。

B选修4-2:矩阵与变换

已知矩阵,向量,求向量,使得

C选修4-4:坐标系与参数方程

在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

D.选修4-5:不等式选讲

解不等式:

 

【答案】

 

A.证明:由弦切角定理可得

B.设,由得:

C.解析:椭圆的普通方程为右焦点为(4,0),直线为参数)的普通方程为,斜率为:;所求直线方程为:

D. 解析:原不等式等价于:,解集为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网