题目内容
已知数列满足且对一切,
有
(Ⅰ)求证:对一切
(Ⅱ)求数列通项公式.
(Ⅲ)求证:
【解析】第一问利用,已知表达式,可以得到,然后得到,从而求证 。
第二问,可得数列的通项公式。
第三问中,利用放缩法的思想,我们可以得到
然后利用累加法思想求证得到证明。
解: (1) 证明:
【答案】
见解析
练习册系列答案
相关题目
题目内容
已知数列满足且对一切,
有
(Ⅰ)求证:对一切
(Ⅱ)求数列通项公式.
(Ⅲ)求证:
【解析】第一问利用,已知表达式,可以得到,然后得到,从而求证 。
第二问,可得数列的通项公式。
第三问中,利用放缩法的思想,我们可以得到
然后利用累加法思想求证得到证明。
解: (1) 证明:
见解析