题目内容
设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=
A.
B.
6
C.
12
D.
在区间[-2,3]上随机选取一个数x,则x≤1的概率为
命题“x∈R,x2≠x”的否定是
xR,x2≠x
x∈R,x2=x
如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.
等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=
n(n+1)
n(n-1)
已知函数f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=________.
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(Ⅰ)BE=EC;
(Ⅱ)AD·DE=2PB2.
已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.
对任意复数w1,w2,定义w1*w2=w1,其中是w2的共轭复数,对任意复数z1,z2,z3,有如下四个命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3)
②z1*(z2+z3)=(z1*z2)+(z1*z3)
③(z1*z2)*z3=z1*(z2*z3)
④z1*z2=z2*z1
则真命题的个数是
1
2
3
4