题目内容
【题目】已知椭圆(为参数)与轴正半轴,轴正半轴的交点分别为,动点是椭圆上任一点,则面积的最大值为( )
A. B. C. D.
【答案】B
【解析】分析:根据椭圆的方程算出A(4,0)、B(0,3),从而得到|AB|=5且直线AB:3x+4y﹣12=0.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=|sin﹣1|,结合三角函数的图象与性质算出dmax=(),由此结合三角形面积公式,即可得到△PAB面积的最大值.
详解:由题得椭圆C方程为:,
∴椭圆与x正半轴交于点A(4,0),与y正半轴的交于点B(0,3),
∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[0,2π])
∴点P到直线AB:3x+4y﹣12=0的距离为
d==|sin﹣1|,
由此可得:当θ=时,dmax=()
∴△PAB面积的最大值为S=|AB|×dmax=6().
练习册系列答案
相关题目
【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.
(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | |||
女 | |||
合计 |
(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
附: