题目内容
【题目】已知函数f(x)=|x+a|-|x-1|.
(Ⅰ)当a=-2时,求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求实数a的取值范围.
【答案】解:(Ⅰ)当a=-2时,
当x≤1时,由 得 ,成立,∴x≤1;
当1<x≤2时,由 得 解得 ,∴ ;
当x>2时,由 得 ,不成立,∴无解.
综上, 的解集为 .
(Ⅱ)∵f(x)=|x+a|-|x-1|≥2有解,
∴f(x)max≥2.
∵|x+a|-|x-1|≤(x+a)-(x-1)=|a+1|,
∴|a+1|≥2,∴a≥1或a≤-3
【解析】(Ⅰ)先将所给函数的绝对值去掉,再分段讨论求得不等式的解集;(Ⅱ)根据函数的最值及基本不等式求得a的取值范围.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:.
练习册系列答案
相关题目
【题目】在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数 ,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | ||||||||||
乙 |
根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.