题目内容
【题目】函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则a的值为 .
【答案】4
【解析】解:求导函数,可得f′(x)=3x2+2ax+b
∵函数f(x)=x3+ax2+bx+a2在x=1时有极值10
∴f′(1)=2a+b+3=0,f(1)=a2+a+b+1=10
解得a=﹣3,b=3或a=4,b=﹣11,
当a=﹣3时,f′(x)=3x2﹣6x+3=3(x﹣1)2≥0,∴x=1不是极值点
当a=4,b=﹣11时,f′(x)=3x2+8x﹣11=(x﹣1)(3x+11),在x=1的左右附近,导数符号改变,满足题意
∴a=4
所以答案是:4.
【考点精析】掌握函数的极值与导数是解答本题的根本,需要知道求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
练习册系列答案
相关题目
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格关于时间的函数关系式;(表示投放市场的第天);
(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?