题目内容
【题目】设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是( )
A.α⊥β,α∩β=l,m⊥l
B.α∩γ=m,α⊥γ,β⊥γ
C.α⊥γ,β⊥γ,m⊥α
D.n⊥α,n⊥β,m⊥α
【答案】D
【解析】α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件mα,故不正确;α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
n⊥α,n⊥β,α∥β,而m⊥α,则m⊥β,故正确
故选D
【考点精析】利用直线与平面垂直的判定对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
练习册系列答案
相关题目