ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=$\frac{2}{3}$£¬a2=2ÇÒ3£¨an+1-2an+an-1£©=2£®£¨1£©Áîbn=an-an-1£¬ÇóÖ¤£º{bn}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©ÎªÊ¹$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+¡+$\frac{1}{{a}_{n}}$£¾$\frac{5}{2}$³ÉÁ¢µÄ×îСµÄÕýÕûÊýn£®
·ÖÎö £¨1£©ÓÉ3£¨an+1-2an+an-1£©=2£¬±äÐÎΪ£ºan+1-an=an-an-1+$\frac{2}{3}$£®¿ÉµÃbn+1-bn=$\frac{2}{3}$£¬ÀûÓõȲîÊýÁеĶ¨Òå¼´¿ÉÖ¤Ã÷£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºan-an-1=$\frac{2}{3}n$£®ÀûÓá°ÀÛ¼ÓÇóºÍ¡±¿ÉµÃ£ºan=a1+£¨a2-a1£©+£¨a3-a2£©+¡+£¨an-an-1£©=$\frac{n£¨n+1£©}{3}$£¬¿ÉµÃ$\frac{1}{{a}_{n}}$=3$£¨\frac{1}{n}-\frac{1}{n+1}£©$£®ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃ£º$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+¡+$\frac{1}{{a}_{n}}$=3$£¨1-\frac{1}{n+1}£©$=$\frac{3n}{n+1}$£¾$\frac{5}{2}$£¬½â³ö¼´¿É£®
½â´ð £¨1£©Ö¤Ã÷£º¡ß3£¨an+1-2an+an-1£©=2£¬±äÐÎΪ£ºan+1-an=an-an-1+$\frac{2}{3}$£®
¡ßbn=an-an-1£¬¡àbn+1-bn=$\frac{2}{3}$£¬
ÓÉa2-a1=a1-a0+$\frac{2}{3}$£¬
¡à$2-\frac{2}{3}$=b1+$\frac{2}{3}$£¬½âµÃb1=$\frac{2}{3}$£®
¡à{bn}ÊǵȲîÊýÁУ¬Ê×ÏîΪ$\frac{2}{3}$£¬¹«²îΪ$\frac{2}{3}$£®
¡àbn=$\frac{2}{3}+£¨n-1£©¡Á\frac{2}{3}$=$\frac{2}{3}n$£®
£¨2£©½â£ºÓÉ£¨1£©¿ÉµÃ£ºan-an-1=$\frac{2}{3}n$£®
¡àan=a1+£¨a2-a1£©+£¨a3-a2£©+¡+£¨an-an-1£©
=$\frac{2}{3}$+$\frac{2}{3}$¡Á2+$\frac{2}{3}¡Á3$+¡+$\frac{2}{3}n$
=$\frac{n£¨n+1£©}{3}$£¬
¡à$\frac{1}{{a}_{n}}$=3$£¨\frac{1}{n}-\frac{1}{n+1}£©$£®
¡à$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+¡+$\frac{1}{{a}_{n}}$=3$[£¨1-\frac{1}{2}£©+£¨\frac{1}{2}-\frac{1}{3}£©$+¡+$£¨\frac{1}{n}-\frac{1}{n+1}£©]$=3$£¨1-\frac{1}{n+1}£©$=$\frac{3n}{n+1}$£¾$\frac{5}{2}$³ÉÁ¢£¬
Ôòn£¾5£®
Òò´ËΪʹ$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+¡+$\frac{1}{{a}_{n}}$£¾$\frac{5}{2}$³ÉÁ¢µÄ×îСµÄÕýÕûÊýn=6£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍƹØϵ¡¢µÈ²îÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½¡¢¡°ÀÛ¼ÓÇóºÍ¡±Óë¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢²»µÈʽµÄÐÔÖÊ¡¢¡°·ÅËõ·¨¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | x | B£® | y | C£® | 1 | D£® | 0 |