题目内容

【题目】已知椭圆的左焦点为F1 , 有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为(  )
A.
B.
C.
D.

【答案】C
【解析】解:假设长轴在x轴,短轴在y轴,以下分为三种情况:(1)球从F1沿x轴向左直线运动,碰到左顶点必然原路反弹,这时第一次回到F1路程是2(a﹣c);(2 )球从F1沿x轴向右直线运动,碰到右顶点必然原路反弹,这时第一次回到F1路程是2(a+c);(3)球从F1沿x轴斜向上(或向下)运动,碰到椭圆上的点A,反弹后经过椭圆的另一个焦点F2,再弹到椭圆上一点B,经F1反弹后经过点F1,此时小球经过的路程是4a.

综上所述,从点F1沿直线出发,经椭圆壁反射后第一次回到点F1时,小球经过的最大路程是4a最小路程是2(a﹣c).

∴由题意可得4a=10(a﹣c),即6a=10c,得

∴椭圆的离心率为

所以答案是:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网