题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且asinAcosC+csinAcosA= c,D是AC的中点,且cosB= ,BD=
(1)求角A的大小;
(2)求△ABC的最短边的边长.

【答案】
(1)解:∵cosB=

∴sinB=

又∵asinAcosC+csinAcosA= c,

∴正弦定理化简可得:sinAcosCsinA+sinAsinCcosA= sinC.

即sinA(cosCsinA+sinCcosA)= sinC

∴sinAsinB= sinC,

∵A+B+C=π,

∴C=π﹣(A+B)

∴sinAsinB= sin(A+B)

sinA= sinAcosB+ cosAsinB,

∴sinA=cosA.

即tanA=1,

∵0<A<π,

∴A=


(2)D是AC的中点,且cosB= ,BD=

根据余弦定理得c2+ b2 bc=26

sinA= sinC,且sinB× = sinC

解得:a=2

b=2

c=6

∴△ABC的最短边的边长2


【解析】(1)利用正弦定理化简并根据和与差的公式即可求出角A的值。(2)根据余弦定理建立关系求解出a、b、c的值即可得到△ABC的最短边的边长。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网