题目内容
【题目】点P是双曲线 的右支上一点,其左,右焦点分别为F1 , F2 , 直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2 , 则离心率的值为( )
A.
B.
C.
D.
【答案】C
【解析】解:由线段PF1的垂直平分线恰好过点F2,
可得|PF2|=|F1F2|=2c,
由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,
可得|OA|=a,
设PF1的中点为M,由中位线定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|= =2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|﹣|PF2|=2a,
即4b﹣2c=2a,即2b=a+c,
即有4b2=(a+c)2,
即4(c2﹣a2)=(a+c)2,
可得a= c,
所以e= = .
故选:C.
由中垂线可得,根据中位线可得,,由勾股定理和双曲线定理得出a,b,c的关系,可得其离心率的值.
练习册系列答案
相关题目
【题目】某种产品的质量以其质量指标衡量,并依据质量指标值划分等级如表:
质量指标值m | m<185 | 185≤m<205 | M≥205 |
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查的数据,能否认为该企业生产这种产品符合“一、二等品至少要占到全部产品的92%的规定”?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品的质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?