题目内容

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

【答案】解:(Ⅰ)因为椭圆W的左顶点A在圆O:x2+y2=16上, 令y=0,得x=±4,所以a=4.
又离心率为 ,所以 ,所以
所以b2=a2﹣c2=4,
所以W的方程为
(Ⅱ)法一:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为y=k(x+4),
与椭圆方程联立得
化简得到(1+4k2)x2+32k2x+64k2﹣16=0,
因为﹣4为上面方程的一个根,所以 ,所以
所以
因为圆心到直线AP的距离为
所以
因为
代入得到
显然 ,所以不存在直线AP,使得
法二:
设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为x=my﹣4,
与椭圆方程联立得
化简得到(m2+4)y2﹣8my=0,由△=64m2>0得m≠0.
显然0是上面方程的一个根,所以另一个根,即

因为圆心到直线AP的距离为
所以
因为
代入得到
,则m=0,与m≠0矛盾,矛盾,
所以不存在直线AP,使得
法三:假设存在点P,使得 ,则 ,得
显然直线AP的斜率不为零,设直线AP的方程为x=my﹣4
,得(m2+4)y2﹣8my=0,
由△=64m2>0得m≠0,
所以
同理可得
所以由
则m=0,与m≠0矛盾,
所以不存在直线AP,使得
【解析】(Ⅰ)由题意求出a,通过离心率求出c,然后求解椭圆的标准方程.(Ⅱ)法一:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为y=k(x+4),与椭圆方程联立,利用弦长公式求出|AP|,利用垂径定理求出|oa|,即可得到结果.法二:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为x=my﹣4,与椭圆方程联立与椭圆方程联立得求出|AP|,利用垂径定理求出|oa|,即可得到结果.法三:假设存在点P,推出 ,设直线AP的方程为x=my﹣4,联立直线与椭圆的方程,利用韦达定理,推出 ,求解即可.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网