题目内容

当点P在圆x2+y2=1上变动时,它与定点Q (3,0) 相连,线段PQ的中点M的轨迹方程是(  )

A.(x+3)2+y2=4B.(x-3)2+y2=1
C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1

C

解析试题分析:设PQ中点M(x,y),因为点Q 的坐标为(3,0),所以P(2x-3,2y),代入圆的方程,x2+y2=1得(2x-3)2+4y2=1。
考点:轨迹方程的求法。
点评:求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设P(x,y)是轨迹上的任意一点;
②寻找动点P(x,y)所满足的条件;③用坐标(x,y)表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式;⑤证明所得方程即为所求的轨迹方程,注意验证。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网