题目内容
(2004•朝阳区一模)已知a=
(
+
+…+
),b=
(1+
+
+…+
+…),则a、b的值分别为
,
,
,c=
=
.
lim |
n→+∞ |
1 |
n2 |
2 |
n2 |
n |
n2 |
lim |
n→+∞ |
1 |
3 |
1 |
9 |
1 |
3n-1 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
lim |
n→+∞ |
an+bn |
an+1+bn+1 |
2 |
3 |
2 |
3 |
分析:先利用等差、等比数列的前n项和公式对a,b进行化简,然后再求极限可得a,b,把a,b值代入c化简后可求得极限.
解答:解:∵
+
+…+
=
=
,∴a=
=
=
;
∵1+
+
+…+
=
,∴b=
=
;
则
=
=
,
所以c=
=
,
故答案为:
,
;
.
1 |
n2 |
2 |
n2 |
n |
n2 |
| ||
n2 |
n+1 |
2n |
lim |
n→∞ |
n+1 |
2n |
lim |
n→∞ |
1+
| ||
2 |
1 |
2 |
∵1+
1 |
3 |
1 |
9 |
1 |
3n-1 |
1-
| ||
1-
|
lim |
n→∞ |
1-
| ||
1-
|
3 |
2 |
则
an+bn |
an+1+bn+1 |
| ||||
|
| ||||||
|
所以c=
lim |
n→∞ |
| ||||||
|
2 |
3 |
故答案为:
1 |
2 |
3 |
2 |
2 |
3 |
点评:本题考查等差、等比数列的前n项和公式、数列极限及其运算,考查学生的运算能力.
练习册系列答案
相关题目