题目内容

【题目】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为

【答案】9
【解析】解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),
∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=
不等式f(x)<c的解集为(m,m+6),
即为x2+ax+ <c解集为(m,m+6),
则x2+ax+ ﹣c=0的两个根为m,m+6
∴|m+6﹣m|= =6
解得c=9
故答案为:9
根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网