题目内容

在△ABC中,若∠A=60°,∠B=75°,c=6,则a=
 
考点:正弦定理
专题:解三角形
分析:由B与C的度数求出A的度数,确定出sinA与sinB的值,再由a的值,利用正弦定理即可求出b的值.
解答: 解:∵∠A=60°,∠B=75°,c=6,则∠C=45°,
∴由正弦定理
a
sinA
=
b
sinB
=
c
sinC

得:a=
csinA
sinC
=
3
2
2
2
=3
6

故答案为:3
6
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网