题目内容

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 的正方形,E为PC的中点,PB=PD.平面PBD⊥平面ABCD.
(1)证明:PA∥平面EDB.
(2)求三棱锥E﹣BCD与三棱锥P﹣ABD的体积比.

【答案】
(1)证明:连A、C交BD于O,连O、E,因为底面是正方形,所以,O是AC的中点,

又因为E是PC的中点,所以OE是△PAC的中位线,所以,OE∥PA,

又因为OE平面DEB,PA平面DEB,所以PA∥平面DEB.


(2)因为E是PC的中点,所以,E到平面ABCD的距离是P到平面ABCD的距离的一半,△BCD与△ABD的面积相等,

所以, .


【解析】分析:(1)连A、C交BD于O,则OE是△PAC的中位线,可得OE∥PA,从而证明PA∥平面DEB.(2)E到平面ABCD的距离是P到平面ABCD的距离的一半,△BCD与△ABD的面积相等,故体积之比等于
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对平面与平面垂直的性质的理解,了解两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网