题目内容
【题目】选修4-4:坐标系与参数方程
已知直线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为(为参数).
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设为曲线上任意一点,求的最小值.
【答案】(1);(2).
【解析】试题分析:(1)根据直线的极坐标方程,即可求得直线l的直角坐标公式,由椭圆C的参数方程即可求得曲线C的直角坐标方程;
(2)由(1)可得丨x-y-4丨=丨2cosφ-sinφ-4丨,根据辅助角公式及正弦函数的性质,即可求得|x-y-4|的最小值.
试题解析:
(1)由ρcosθ-ρsinθ=4,将x=ρcosθ,y=ρsinθ代入即得直线l的直角坐标方程为 ;曲线的参数方程为(为参数)所以.
(2)设,则丨x-y-4丨=丨2cosφ-sinφ-4丨=|cos(φ+α)-4丨=4-cos(φ+α)(tanα=)当cos(φ+α)=1时,|x-y-4|取最小值,最小值为4-.
练习册系列答案
相关题目
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)