题目内容
8.设随机变量ξ~N(μ,σ2),且P(ξ<-2)=P(ξ>2)=0.3,则P(-2<ξ<0)=0.2.分析 随机变量ξ服从正态分布N(μ,σ2),且P(ξ<-1)=P(ξ>1),得到曲线关于x=0对称,利用P(ξ>2)=0.3,根据概率的性质得到结果.
解答 解:因为P(ξ<-2)=P(ξ>2),所以正态分布曲线关于y轴对称,
又因为P(ξ>2)=0.3,所以P(-2<ξ<0)=$\frac{1-2×0.3}{2}$=0.2.
故答案为:0.2.
点评 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
练习册系列答案
相关题目
16.下列各组函数是同一函数的是( )
A. | y=$\frac{2|x|}{x}$与y=2 | B. | y=$\frac{{x}^{2}+x}{x+1}$与y=x(x≠-1) | ||
C. | y=|x-2|与y=x-2(x≥2) | D. | y=|x+1|+|x|与y=2x+1 |
3.下列说法错误的是( )
A. | 将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变 | |
B. | 回归直线$\hat y=\hat bx+\hat a$必过点$(\overline x,\overline y)$ | |
C. | 在一个2×2列联表中,由计算得随机变量K2的观测值k=13.079,则可以在犯错误的概率不超过0.001的前提下,认为这两个变量间有关系 | |
D. | 设有一个线性回归方程为$\hat y=3-5\hat x$,则变量x增加一个单位时,y平均增加5个单位 |
13.在△ABC中,如果a+c=2b,B=30°,△ABC的面积为$\frac{3}{2}$,那么b等于( )
A. | $\frac{{1+\sqrt{3}}}{2}$ | B. | $1+\sqrt{3}$ | C. | $\frac{{2+\sqrt{3}}}{2}$ | D. | $2+\sqrt{3}$ |
17.若a<b<0,则下列不等式中成立的是( )
A. | a2>b2 | B. | |a|<|b| | C. | $\frac{1}{a}<\frac{1}{b}$ | D. | a3>b3 |