题目内容
(本小题满分12分)
在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-
成等比数列
(1)求a2,a3,a4,并推出an的表达式;
(2)用数学归纳法证明所得的结论;
在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123053481.gif)
(1)求a2,a3,a4,并推出an的表达式;
(2)用数学归纳法证明所得的结论;
(1)a2=-
,a3=-
,a4=-
,由此可推出
an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230659958.gif)
(2)略
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230550219.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230597242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230612247.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123062876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230659958.gif)
(2)略
解
∵an,Sn,Sn-
成等比数列,
∴Sn2=an·(Sn-
)(n≥2) (*)
(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230550219.gif)
由a1=1,a2=-
,S3=
+a3代入(*)式得
a3=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230597242.gif)
同理可得
a4=-
,由此可推出
an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230659958.gif)
(2)①当n=1,2,3,4时,由(*)知猜想成立
②假设n=k(k≥2)时,ak=-
成立
故Sk2=-
·(Sk-
)
∴(2k-3)(2k-1)Sk2+2Sk-1=0
∴Sk=
(舍)
由Sk+12=ak+1·(Sk+1-
),得(Sk+ak+1)2=ak+1(ak+1+Sk-
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231512312052035.gif)
由①②知,an=
对一切n∈N成立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123062876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
∴Sn2=an·(Sn-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230550219.gif)
由a1=1,a2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230550219.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230893214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123062876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230597242.gif)
同理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123062876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230612247.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123062876.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230659958.gif)
(2)①当n=1,2,3,4时,由(*)知猜想成立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123053481.gif)
②假设n=k(k≥2)时,ak=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151231111573.gif)
故Sk2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151231111573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
∴(2k-3)(2k-1)Sk2+2Sk-1=0
∴Sk=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151231143592.gif)
由Sk+12=ak+1·(Sk+1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151230519213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231512312052035.gif)
由①②知,an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823151231221955.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315123053481.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目