ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êԵ㣬½¹µãÔÚxÖáÉÏ£¬²¢ÇÒ½¹¾àΪ2£¬¶ÌÖáÓ볤ÖáµÄ±ÈÊÇ
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²ÖÐÓÐÈç϶¨Àí£º¹ýÍÖÔ²
+
=1(a£¾b£¾0)ÉÏÈÎÒâÒ»µãM£¨x0£¬y0£©µÄÇÐÏßΨһ£¬ÇÒ·½³ÌΪ
+
=1£¬ÀûÓô˶¨ÀíÇó¹ýÍÖÔ²µÄµã(1£¬
)µÄÇÐÏߵķ½³Ì£»
£¨3£©Èçͼ£¬¹ýÍÖÔ²µÄÓÒ×¼ÏßÉÏÒ»µãP£¬ÏòÍÖÔ²ÒýÁ½ÌõÇÐÏßPA£¬PB£¬ÇеãΪA£¬B£¬ÇóÖ¤£ºA£¬F£¬BÈýµã¹²Ïߣ®
| ||
2 |
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²ÖÐÓÐÈç϶¨Àí£º¹ýÍÖÔ²
x2 |
a2 |
y2 |
b2 |
x0x |
a2 |
y0y |
b2 |
3 |
2 |
£¨3£©Èçͼ£¬¹ýÍÖÔ²µÄÓÒ×¼ÏßÉÏÒ»µãP£¬ÏòÍÖÔ²ÒýÁ½ÌõÇÐÏßPA£¬PB£¬ÇеãΪA£¬B£¬ÇóÖ¤£ºA£¬F£¬BÈýµã¹²Ïߣ®
·ÖÎö£º£¨1£©ÉèÍÖÔ²µÄ·½³ÌΪ
+
=1£¬ÀûÓÃc=1¼°
=
£¬a2=b2+c2£¬½âµÃ¼´¿É£®
£¨2£©ÀûÓøø³öµÄ¶¨Àí´úÈë¼´¿É£»
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓã¨2£©Öиø³öµÄ¶¨Àí¿ÉµÃ£ºÇÐÏßPA£¬PB£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³ÌÊÇx+
y=1£®µãF£¨1£¬0£©Âú×ã´Ë·½³Ì£¬¼´¿ÉÖ¤Ã÷A£¬F£¬B¹²Ïߣ®
x2 |
a2 |
y2 |
b2 |
b |
a |
| ||
2 |
£¨2£©ÀûÓøø³öµÄ¶¨Àí´úÈë¼´¿É£»
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓã¨2£©Öиø³öµÄ¶¨Àí¿ÉµÃ£ºÇÐÏßPA£¬PB£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³ÌÊÇx+
y0 |
3 |
½â´ð£º½â£º£¨1£©ÉèÍÖÔ²µÄ·½³ÌΪ
+
=1£¬ÓÉc=1¼°
=
£¬ÓÖa2=b2+c2£®
ÁªÁ¢½âµÃa=2£¬b=
£¬
¡àÍÖÔ²µÄ·½³ÌΪ
+
=1£®
£¨2£©Óɶ¨ÀíµÃ¹ýµãA(1£¬
)µÄÇÐÏߵķ½³ÌΪ
+
=1£¬¼´x+2y-4=0£®
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòAPµÄ·½³ÌΪ
+
=1£¬BPµÄ·½³ÌΪ
+
=1£®
ÓÖµãP£¨4£¬y0£©ÔÚÁ½ÌõÇÐÏßÉÏ£¬¡àx1+
y1=1£¬x2+
y2=1£®
¡àÖ±ÏßABµÄ·½³ÌÊÇx+
y=1£®
¸ÃÖ±Ïß¹ýµãF£¨1£¬0£©£¬¹ÊA£¬F£¬B¹²Ïߣ®
x2 |
a2 |
y2 |
b2 |
b |
a |
| ||
2 |
ÁªÁ¢½âµÃa=2£¬b=
3 |
¡àÍÖÔ²µÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©Óɶ¨ÀíµÃ¹ýµãA(1£¬
3 |
2 |
x |
4 |
y |
2 |
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòAPµÄ·½³ÌΪ
x1x |
4 |
y1y |
3 |
x2x |
4 |
y2y |
3 |
ÓÖµãP£¨4£¬y0£©ÔÚÁ½ÌõÇÐÏßÉÏ£¬¡àx1+
y0 |
3 |
y0 |
3 |
¡àÖ±ÏßABµÄ·½³ÌÊÇx+
y0 |
3 |
¸ÃÖ±Ïß¹ýµãF£¨1£¬0£©£¬¹ÊA£¬F£¬B¹²Ïߣ®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢ÇÐÏßµÄÐÔÖÊ¡¢Èýµã¹²ÏߵȻù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿