ÌâÄ¿ÄÚÈÝ
±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚÏàÓ¦µÄ´ðÌâÇøÓòÄÚ×÷´ð£®Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮A£ºABÊÇÔ²OµÄÖ±¾¶£¬DΪԲOÉÏÒ»µã£¬¹ýD×÷Ô²OµÄÇÐÏß½»ABÑÓ³¤ÏßÓÚµãC£¬ÈôDA=DC£¬ÇóÖ¤£ºAB=2BC£®
B£ºÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨0£¬0£©£¬B£¨-2£¬0£©£¬C£¨-2£¬1£©£®ÉèkΪ·ÇÁãʵÊý£¬¾ØÕóM=
|
|
C£ºÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²¦Ñ=2cos¦ÈÓëÖ±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0ÏàÇУ¬ÇóʵÊýaµÄÖµ£®
D£ºÉèa¡¢bÊǷǸºÊµÊý£¬ÇóÖ¤£ºa3+b3¡Ý
ab |
·ÖÎö£ºA¡¢Á¬½ÓOD£¬ÔòOD¡ÍDC£¬ÓÖOA=OD£¬DA=DC£¬ËùÒÔ¡ÏDAO=¡ÏODA=¡ÏDCO£¬ÔÙÖ¤Ã÷OB=BC=OD=OA£¬¼´¿ÉÇó½â£®
B¡¢ÓÉÌâÉèµÃMN=
=
£¬¸ù¾Ý¾ØÕóµÄÔËËã·¨Ôò½øÐÐÇó½â£®
C¡¢ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²¦Ñ=2cos¦ÈÓëÖ±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0ÏàÇУ¬ÓÉÌâÒ⽫ԲºÍÖ±ÏßÏÈ»¯ÎªÒ»°ã·½³Ì×ø±ê£¬È»ºóÔÙ¼ÆËãaÖµ£®
D¡¢ÀûÓò»µÈʽµÄÐÔÖʽøÐзÅËõÖ¤Ã÷£¬a3+b3-
(a2+b2)=a2
(
-
)+b2
(
-
)È»ºóÔÙ½øÐÐÌÖÂÛÇóÖ¤£®
B¡¢ÓÉÌâÉèµÃMN=
|
|
|
C¡¢ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²¦Ñ=2cos¦ÈÓëÖ±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0ÏàÇУ¬ÓÉÌâÒ⽫ԲºÍÖ±ÏßÏÈ»¯ÎªÒ»°ã·½³Ì×ø±ê£¬È»ºóÔÙ¼ÆËãaÖµ£®
D¡¢ÀûÓò»µÈʽµÄÐÔÖʽøÐзÅËõÖ¤Ã÷£¬a3+b3-
ab |
a |
a |
b |
b |
b |
a |
½â´ð£º½â£ºA£º£¨·½·¨Ò»£©Ö¤Ã÷£ºÁ¬½ÓOD£¬Ôò£ºOD¡ÍDC£¬
ÓÖOA=OD£¬DA=DC£¬ËùÒÔ¡ÏDAO=¡ÏODA=¡ÏDCO£¬
¡ÏDOC=¡ÏDAO+¡ÏODA=2¡ÏDCO£¬
ËùÒÔ¡ÏDCO=30¡ã£¬¡ÏDOC=60¡ã£¬
ËùÒÔOC=2OD£¬¼´OB=BC=OD=OA£¬ËùÒÔAB=2BC£®
£¨·½·¨¶þ£©Ö¤Ã÷£ºÁ¬½ÓOD¡¢BD£®
ÒòΪABÊÇÔ²OµÄÖ±¾¶£¬ËùÒÔ¡ÏADB=90¡ã£¬AB=2OB£®
ÒòΪDCÊÇÔ²OµÄÇÐÏߣ¬ËùÒÔ¡ÏCDO=90¡ã£®
ÓÖÒòΪDA=DC£¬ËùÒÔ¡ÏDAC=¡ÏDCA£¬
ÓÚÊÇ¡÷ADB¡Õ¡÷CDO£¬´Ó¶øAB=CO£®
¼´2OB=OB+BC£¬µÃOB=BC£®
¹ÊAB=2BC£®
BÂú·Ö£¨10·Ö£©£®ÓÉÌâÉèµÃMN=
=
ÓÉ
=
£¬¿ÉÖªA1£¨0£¬0£©¡¢B1£¨0£¬-2£©¡¢C1£¨k£¬-2£©£®
¼ÆËãµÃ¡÷ABCÃæ»ýµÄÃæ»ýÊÇ1£¬¡÷A1B1C1µÄÃæ»ýÊÇ|k|£¬ÔòÓÉÌâÉèÖª£º|k|=2¡Á1=2£®
ËùÒÔkµÄֵΪ2»ò-2£®
C½â£º¦Ñ2=2¦Ñcos¦È£¬Ô²¦Ñ=2cos¦ÈµÄÆÕͨ·½³ÌΪ£ºx2+y2=2x£¬£¨x-1£©2+y2=1£¬
Ö±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0µÄÆÕͨ·½³ÌΪ£º3x+4y+a=0£¬
ÓÖÔ²ÓëÖ±ÏßÏàÇУ¬ËùÒÔ
=1£¬
½âµÃ£ºa=2£¬»òa=-8£®
D£¨·½·¨Ò»£©Ö¤Ã÷£ºa3+b3-
(a2+b2)=a2
(
-
)+b2
(
-
)
=(
-
)[(
)5-(
)5]
=(
-
)2[(
)4+(
)3(
)+(
)2(
)2+(
)(
)3+(
)4]
ÒòΪʵÊýa¡¢b¡Ý0£¬(
-
)2¡Ý0£¬[(
)4+(
)3(
)+(
)2(
)2+(
)(
)3+(
)4]¡Ý0
ËùÒÔÉÏʽ¡Ý0£®¼´ÓÐa3+b3¡Ý
(a2+b2)£®
£¨·½·¨¶þ£©Ö¤Ã÷£ºÓÉa¡¢bÊǷǸºÊµÊý£¬×÷²îµÃa3+b3-
(a2+b2)
=a2
(
-
)+b2
(
-
)
=(
-
)[(
)5-(
)5]
µ±a¡Ýbʱ£¬
¡Ý
£¬´Ó¶ø(
)5¡Ý(
)5£¬µÃ(
-
)[(
)5-(
)5]¡Ý0£»
µ±a£¼bʱ£¬
£¼
£¬´Ó¶ø(
)5£¼(
)5£¬µÃ(
-
)[(
)5-(
)5]£¼0£»
ËùÒÔa3+b3¡Ý
(a2+b2)£®
ÓÖOA=OD£¬DA=DC£¬ËùÒÔ¡ÏDAO=¡ÏODA=¡ÏDCO£¬
¡ÏDOC=¡ÏDAO+¡ÏODA=2¡ÏDCO£¬
ËùÒÔ¡ÏDCO=30¡ã£¬¡ÏDOC=60¡ã£¬
ËùÒÔOC=2OD£¬¼´OB=BC=OD=OA£¬ËùÒÔAB=2BC£®
£¨·½·¨¶þ£©Ö¤Ã÷£ºÁ¬½ÓOD¡¢BD£®
ÒòΪABÊÇÔ²OµÄÖ±¾¶£¬ËùÒÔ¡ÏADB=90¡ã£¬AB=2OB£®
ÒòΪDCÊÇÔ²OµÄÇÐÏߣ¬ËùÒÔ¡ÏCDO=90¡ã£®
ÓÖÒòΪDA=DC£¬ËùÒÔ¡ÏDAC=¡ÏDCA£¬
ÓÚÊÇ¡÷ADB¡Õ¡÷CDO£¬´Ó¶øAB=CO£®
¼´2OB=OB+BC£¬µÃOB=BC£®
¹ÊAB=2BC£®
BÂú·Ö£¨10·Ö£©£®ÓÉÌâÉèµÃMN=
|
|
|
ÓÉ
|
|
|
¼ÆËãµÃ¡÷ABCÃæ»ýµÄÃæ»ýÊÇ1£¬¡÷A1B1C1µÄÃæ»ýÊÇ|k|£¬ÔòÓÉÌâÉèÖª£º|k|=2¡Á1=2£®
ËùÒÔkµÄֵΪ2»ò-2£®
C½â£º¦Ñ2=2¦Ñcos¦È£¬Ô²¦Ñ=2cos¦ÈµÄÆÕͨ·½³ÌΪ£ºx2+y2=2x£¬£¨x-1£©2+y2=1£¬
Ö±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0µÄÆÕͨ·½³ÌΪ£º3x+4y+a=0£¬
ÓÖÔ²ÓëÖ±ÏßÏàÇУ¬ËùÒÔ
|3•1+4•0+a| | ||
|
½âµÃ£ºa=2£¬»òa=-8£®
D£¨·½·¨Ò»£©Ö¤Ã÷£ºa3+b3-
ab |
a |
a |
b |
b |
b |
a |
=(
a |
b |
a |
b |
=(
a |
b |
a |
a |
b |
a |
b |
a |
b |
b |
ÒòΪʵÊýa¡¢b¡Ý0£¬(
a |
b |
a |
a |
b |
a |
b |
a |
b |
b |
ËùÒÔÉÏʽ¡Ý0£®¼´ÓÐa3+b3¡Ý
ab |
£¨·½·¨¶þ£©Ö¤Ã÷£ºÓÉa¡¢bÊǷǸºÊµÊý£¬×÷²îµÃa3+b3-
ab |
=a2
a |
a |
b |
b |
b |
a |
=(
a |
b |
a |
b |
µ±a¡Ýbʱ£¬
a |
b |
a |
b |
a |
b |
a |
b |
µ±a£¼bʱ£¬
a |
b |
a |
b |
a |
b |
a |
b |
ËùÒÔa3+b3¡Ý
ab |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÈý½ÇÐΡ¢Ô²µÄÓйØ֪ʶ£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¼°Í¼ÐÎÔÚ¾ØÕó¶ÔÓ¦µÄ±ä»»Ïµı仯Ìص㣬¿¼²éÔËËãÇó½âÄÜÁ¦»¹¿¼²éÇúÏߵļ«×ø±ê·½³ÌµÈ»ù±¾ÖªÊ¶£¬¿¼²éת»¯ÎÊÌâµÄÄÜÁ¦£®ÁíÍâ´ËÌâÒ²¿¼²é²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄÇø±ðºÍÁªÏµ£¬Á½ÕßÒª»á»¥Ïàת»¯£¬¸ù¾Ýʵ¼ÊÇé¿öÑ¡Ôñ²»Í¬µÄ·½³Ì½øÐÐÇó½â£¬ÕâÒ²ÊÇÿÄê¸ß¿¼±Ø¿¼µÄÈȵãÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿