题目内容
11.若函数f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{b}{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b为常数),在(0,+∞)上有最小值4,则函数f(x)在(-∞,0)上有( )A. | 最大值4 | B. | 最小值-4 | C. | 最大值2 | D. | 最小值-2 |
分析 令g(x)=aln(x+$\sqrt{1+{x}^{2}}$),h(x)=b($\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$),判断g(x),h(x)的奇偶性,可得f(x)=g(x)+h(x)+3,由g(x)+h(x)的最值之和为0,即可得到f(x)在(-∞,0)上有最大值.
解答 解:令g(x)=aln(x+$\sqrt{1+{x}^{2}}$),
g(-x)+g(x)=aln(-x+$\sqrt{1+{x}^{2}}$)+aln(x+$\sqrt{1+{x}^{2}}$)
=aln(1+x2-x2)=aln1=0,
即有g(x)为奇函数;
令h(x)=b($\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$),h(-x)=b($\frac{1}{2}$+$\frac{1}{{2}^{-x}-1}$)=b($\frac{1}{2}$+$\frac{{2}^{x}}{1-{2}^{x}}$),
由h(x)+h(-x)=0,可得h(x)为奇函数,
则f(x)=g(x)+h(x)+3,
由f(x)在(0,+∞)上有最小值4,
可得g(x)+h(x)在(0,+∞)上有最小值1,
则g(x)+h(x)在(-∞,0)上有最大值-1,
即有f(x)在(-∞,0)上有最大值-1+3=2,
故选:C.
点评 本题考查函数的奇偶性的判断和运用:求最值,考查运算能力和构造函数的思想方法,属于中档题.
练习册系列答案
相关题目
1.设a,b∈R,下列不等式中恒成立的是( )
A. | $a+\frac{1}{a}≥2$ | B. | $\frac{a}{b}+\frac{b}{a}≥2$ | C. | a2+b2>2ab | D. | $\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$ |
19.若sin(π+α)+sin(-α)=-m,则sin(3π+α)+2sin(2π-α)等于( )
A. | -$\frac{2}{3}$m | B. | -$\frac{3}{2}$m | C. | $\frac{2}{3}$m | D. | $\frac{3}{2}$m |
6.函数$f(x)=\frac{{2\sqrt{x}}}{x+1}$的最大值为( )
A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | 4 |
3.下列函数在区间(-1,1)上单调递减的是( )
A. | y=cosx | B. | y=$\frac{1}{x-0.5}$ | C. | y=-ln(x+1) | D. | y=x+$\frac{1}{x}$ |
1.已知点A(2,3)与点B(6,y)的距离等于4$\sqrt{5}$,则y的值是( )
A. | 11或5 | B. | -5或-11 | C. | 11 | D. | 11或-5 |