题目内容
设等差数列{an}的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是( )
A.S2 011=2 011,a2 007<a5 | B.S2 011=2 011,a2 007>a5 |
C.S2 011=-2 011,a2 007≤a5 | D.S2 011=-2 011,a2 007≥a5 |
A
试题分析:令
,在R上单调递增且连续的函数所以函数只有唯一的零点,从而可得,同理
∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1两式相加整理可得,
由,可得>0,由等差数列的性质可得
点评:本题的入手点在于通过已知条件的两数列关系式构造两函数,借助于函数单调性得到数列中某些特定项的范围,再结合等差数列中的相关性质即可求解,本题难度很大
练习册系列答案
相关题目