ÌâÄ¿ÄÚÈÝ
10£®ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a5+a6=24£¬S11=143£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTnÂú×ã2${\;}^{{a}_{n}-1}$=¦ËTn-£¨a1-1£©£¨n¡ÊN+£©£¨1£©ÇóÊýÁÐ {an}µÄͨÏʽ
£¨2£©ÈôÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄÇ°nÏîºÍΪTn£¬ÊÔÖ¤Ã÷Tn£¼$\frac{1}{6}$£»
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãʵÊý¦Ë£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝµÈ²îÊýÁеÄÐÔÖʽ¨Á¢·½³Ì×éÇó³ö¹«²î¼´¿ÉÇóÊýÁÐ {an}µÄͨÏʽ
£¨2£©ÇóÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄͨÏʽ£¬ÀûÓÃÁÑÏî·¨½øÐÐÇóºÍ£¬¼´¿ÉÖ¤Ã÷²»µÈʽTn£¼$\frac{1}{6}$£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁеĶ¨Ò壬Çó³öÊýÁÐ{bn}µÄͨÏʽ£¬½øÐÐÅжϼ´¿É£®
½â´ð ½â£º£¨1£©ÔڵȲîÊýÁÐÖУ¬
¡ßS11=143=11a6£¬¡àa6=13£¬
¡ßa5+a6=24£¬¡àa5=11£¬¼´¹«²îd=13-11=2£¬
ÔòÊýÁÐ {an}µÄͨÏʽan=a6+2£¨n-6£©=13+2£¨n-6£©=2n+1£®
£¨2£©$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n+1£©£¨2n+3£©}$=$\frac{1}{2}$£¨$\frac{1}{2n+1}$-$\frac{1}{2n+3}$£©£¬
ÔòÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}$£¨$\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+¡+$$\frac{1}{2n+1}$-$\frac{1}{2n+3}$£©=$\frac{1}{2}$£¨$\frac{1}{3}$-$\frac{1}{2n+3}$£©=$\frac{1}{6}$$-\frac{1}{4n+6}$£¼$\frac{1}{6}$£¬
¼´Tn£¼$\frac{1}{6}$£»
£¨3£©¡ßa1=3£¬2${\;}^{{a}_{n}-1}$=¦ËTn-£¨a1-1£©£¬
¡à4n=¦ËTn-2£¬
¼´Tn=$\frac{1}{¦Ë}•{4}^{n}+\frac{2}{¦Ë}$£¬µ±n=1ʱ£¬b1=$\frac{6}{¦Ë}$£¬
µ±n¡Ý2ʱ£¬bn=Tn-Tn-1=$\frac{1}{¦Ë}•{4}^{n}+\frac{2}{¦Ë}$-$\frac{1}{¦Ë}{4}^{n-1}-\frac{2}{¦Ë}$=$\frac{3}{¦Ë}•{4}^{n-1}$£¬
¼´bn+1=4bn£¬
ÈôÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬
Ôòb2=4b1£¬
¡ßb1=$\frac{6}{¦Ë}$£¬b2=$\frac{12}{¦Ë}$£¬²»Âú×ãÌõ¼þb2=4b1£¬
¡à²»´æÔÚ·ÇÁãʵÊý¦Ë£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁÐͨÏʽµÄÇó½â£¬ÒÔ¼°µÈ²îÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬ÊýÁÐÓë²»µÈʽµÄ¹Øϵ£¬ÒÔ¼°ÀûÓÃÁÑÏî·¨½øÐÐÇóºÍ£¬¿¼²éѧÉúµÄÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£®
2 | 6 | 10 | 14 | ||||||||
1 | 4 | 5 | 8 | 9 | 12 | 13 | ¡£® | ||||
3 | 7 | 11 | 15 |
A£® | µÚ1ÐеÚ1510ÁÐ | B£® | µÚ3ÐеÚ1510ÁÐ | C£® | µÚ2ÐеÚ1511ÁÐ | D£® | µÚ3ÐеÚ1511ÁÐ |
A£® | k£¾4£¿ | B£® | k£¾5£¿ | C£® | k£¾6£¿ | D£® | k£¾7£¿ |