题目内容
14.已知复数z的共轭复数是$\overline{z}$,且复数z满足:|z-1|=1,z≠0,且z在复平面上对应的点在直线y=x上.求z及z•$\overline{z}$的值.
分析 设z=a+ai,(a≠0),根据条件建立方程关系进行求解即可.
解答 解:∵z在复平面上对应的点在直线y=x上且z≠0,
∴设z=a+ai,(a≠0),
∵|z-1|=1,
∴|a-1+ai|=1,
即$\sqrt{(a-1)^{2}+{a}^{2}}$=1,
则2a2-2a+1=1,
即a2-a=0,解得a=0(舍)或a=1,
即z=1+i,$\overline{z}$=1-i,
则z•$\overline{z}$=(1+i)(1-i)=2.
点评 本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.
练习册系列答案
相关题目
4.把13个相同的球全部放入编号为1、2、3的三个盒内,要求盒内的球数不小于盒号数,则不同的放入方法种数为( )
A. | 36 | B. | 45 | C. | 66 | D. | 78 |
5.研究一下,满足以下两个要求的三角形:①三边是连续的三个自然数;②最大角是最小角的两倍.这样的三角形( )
A. | 不存在 | B. | 可能是直角三角形 | ||
C. | 必为钝角三角形 | D. | 可能是锐角三角形 |
9.若sinα<0,且cosα>0,则角α是( )
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
19.某地区2009年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(1)用最小二乘法求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
年份 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号x | 1 | 2 | 3 | 4 | 5 |
人均纯收入y | 2.8 | 3.2 | 4.2 | 4.8 | 5 |
(2)利用(1)中的回归方程,分析2009年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
6.在一次考试中,5名学生的数学和物理成绩如表:(已知学生的数学和物理成绩具有线性相关关系)
现已知其线性回归方程为$\stackrel{∧}{y}$=0.36$\stackrel{∧}{x}$+a,则根据此线性回归方程估计数学得80分的同学的物理成绩为70(四舍五入到整数)
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学成绩x | 80 | 75 | 70 | 65 | 60 |
物理成绩y | 70 | 66 | 68 | 64 | 62 |