题目内容

5.研究一下,满足以下两个要求的三角形:①三边是连续的三个自然数;②最大角是最小角的两倍.这样的三角形(  )
A.不存在B.可能是直角三角形
C.必为钝角三角形D.可能是锐角三角形

分析 根据三角形满足的两个条件,设出三边长分别为n-1,n,n+1,三个角分别为α,π-3α,2α,由n-1,n+1,sinα,以及sin2α,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出cosα,然后利用余弦定理得到(n-1)2=(n+1)2+n2-2(n-1)n•cosα,将表示出的cosα代入,整理后得到关于n的方程,求出方程的解得到n的值,将n的值代入表示出的cosα中,即可求出这个三角形最小角的余弦值,从而可求最大角的余弦值,即可判断最大角的范围,即可得解.

解答 解:设三角形三边是连续的三个自然n-1,n,n+1,三个角分别为α,π-3α,2α,
由正弦定理可得:$\frac{n-1}{sinα}=\frac{n+1}{2sinαcosα}$=$\frac{n+1}{sin2α}$,
∴cosα=$\frac{n+1}{2(n-1)}$,
再由余弦定理可得:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,
化简可得:n2-5n=0,解得:n=5或n=0(舍去),
∴n=5,
则cosα=$\frac{n+1}{2(n-1)}$=$\frac{6}{8}$=$\frac{3}{4}$.
∴cos2α=2cos2α-1=$\frac{1}{8}$>0,故三角形存在且不可能为直角和钝角.
故选:D.

点评 此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网