题目内容
【题目】有甲、乙两个游戏项目,要参与游戏,均需每次先付费元(不返还),游戏甲有种结果:可能获得元,可能获得元,可能获得元,这三种情况的概率分别为,,;游戏乙有种结果:可能获得元,可能获得元,这两种情况的概率均为.
(1)某人花元参与游戏甲两次,用表示该人参加游戏甲的收益(收益=参与游戏获得钱数-付费钱数),求的概率分布及期望;
(2)用表示某人参加次游戏乙的收益,为任意正整数,求证:的期望为.
【答案】(1)分布列见解析,期望为;(2)见解析.
【解析】分析:(1)表示该人参加游戏甲的收益,可能取值为,,,,
分布列为:
(2)用表示某人参加次游戏乙的收益可能取值为,,,…,,…(且),每次独立,获奖的概率为.满足二项分布。
详解:(1)则的所有可能取值为,,,,,
,,
,,
,
;
(2)证明:的所有可能取值为,,,…,,…(且),
(且),
,
,
两式相加即得
,
所以.
练习册系列答案
相关题目