题目内容
两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?
概率为.
解析试题分析:建立坐标系,找出会面的区域,用会面的区域面积:总区域面积.
以X、Y分别表示两人到达时刻,建立直角坐标系如图:
则0≤X≤60, 0≤Y≤60。两人能会面的充要条件是|X-Y|≤20
∴P=
考点:几何概型.
练习册系列答案
相关题目
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
甲 | | 乙 |
6 | 9 | 3 6 7 9 9 |
9 5 1 0 | 8 | 0 1 5 6 |
9 9 4 4 2 | 7 | 3 4 5 8 8 8 |
8 8 5 1 1 0 | 6 | 0 7 7 |
4 3 3 2 | 5 | 2 5 |
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
| 甲班(A方式) | 乙班(B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
附:,其中n=a+b+c+d.)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
品牌 | 甲 | | | 乙 | |
首次出现故障时间x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润(万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程(公里) | ||
纯电动乘用车 | 万元/辆 | 万元/辆 | 万元/辆 |
分组 | 频数 | 频率 |
合计 |
(1)求,,,的值;
(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;
(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望.