题目内容

已知函数f(x)=x2xsin x+cos x.
(1)若曲线yf(x)在点(af(a))处与直线yb相切,求ab的值;
(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围.
(1) a=0,b=1.(2) b>1
(1)由f(x)=x2xsin x+cos x
f′(x)=x(2+cos x),
yf(x)在点(af(a))处与直线yb相切.
f′(a)=a(2+cos a)=0且bf(a),
a=0,bf(0)=1.
(2)令f′(x)=0,得x=0.
∴当x>0时,f′(x)>0,f(x)在(0,+∞)递增.
x<0时,f′(x)<0,f(x)在(-∞,0)上递减.
f(x)的最小值为f(0)=1.
由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,
所以当b>1时曲线yf(x)与直线yb有且仅有两个不同交点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网