题目内容
已知函数f(x)=x2+xsin x+cos x.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
(1) a=0,b=1.(2) b>1
(1)由f(x)=x2+xsin x+cos x,
得f′(x)=x(2+cos x),
∵y=f(x)在点(a,f(a))处与直线y=b相切.
∴f′(a)=a(2+cos a)=0且b=f(a),
则a=0,b=f(0)=1.
(2)令f′(x)=0,得x=0.
∴当x>0时,f′(x)>0,f(x)在(0,+∞)递增.
当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.
∴f(x)的最小值为f(0)=1.
由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,
所以当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.
得f′(x)=x(2+cos x),
∵y=f(x)在点(a,f(a))处与直线y=b相切.
∴f′(a)=a(2+cos a)=0且b=f(a),
则a=0,b=f(0)=1.
(2)令f′(x)=0,得x=0.
∴当x>0时,f′(x)>0,f(x)在(0,+∞)递增.
当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.
∴f(x)的最小值为f(0)=1.
由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,
所以当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.
练习册系列答案
相关题目