题目内容

【题目】已知函数,求:

(1)函数的图象在点(0,-2)处的切线方程;

(2)的单调递减区间.

【答案】(1)9xy﹣2=0.(2)fx)的单调递减区间为(﹣∞,﹣1),(3,+∞).

【解析】

(1)求出f′(x)=﹣3x2+6x+9,f′(0)=9,f(0)=﹣2,由此利用导数的几何意义能求出函数yfx)的图象在点(0,f(0))处的切线方程.

(2)由f′(x)=﹣3x2+6x+9<0,能求出fx)的单调递减区间.

(1)∵fx)=﹣x3+3x2+9x﹣2,

f′(x)=﹣3x2+6x+9,

f′(0)=9,f(0)=﹣2,

∴函数yfx)的图象在点(0,f(0))处的切线方程为:

y+2=9x,即9xy﹣2=0.

(2)∵fx)=﹣x3+3x2+9x﹣2,

f′(x)=﹣3x2+6x+9,

f′(x)=﹣3x2+6x+9<0,

解得x<﹣1或x>3.

fx)的单调递减区间为(﹣∞,﹣1),(3,+∞).

练习册系列答案
相关题目

【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.

1)由大数据可知,在1844岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);

2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;

3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从1835岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在1826岁的概率.

参考答案:.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网