题目内容
【题目】已知直线是曲线的切线.
(1)求函数的解析式,
(2)若,证明:对于任意,有且仅有一个零点.
【答案】(1)(2)证明见解析
【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;
(2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.
(1)根据题意,,设直线与曲线相切于点.
根据题意,可得,解之得,
所以.
(2)由(1)可知,
则当x充分小时,当x充分大时,∴至少有一个零点.
∵,
①若,则,在上单调递增,∴有唯一零点.
②若令,得有两个极值点,
∵,∴,∴.
∴在上单调递增,在上单调递减,在上单调递增.
∴极大值为.,又,
∴在(0,16)上单调递增,
∴,
∴有唯一零点.
综上可知,对于任意,有且仅有一个零点.
练习册系列答案
相关题目
【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.
第0行 | 1 |
第1行 | 1 1 |
第2行 | 1 2 1 |
第3行 | 1 3 3 1 |
第4行 | 1 4 6 4 1 |
第5行 | 1 5 10 10 5 1 |
第6行 | 1 6 15 20 15 6 1 |
(1)记杨辉三角的前n行所有数之和为,求的通项公式;
(2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为?若存在,试求出是第几行;若不存在,请说明理由;
(3)已知n,r为正整数,且.求证:任何四个相邻的组合数,,,不能构成等差数列.