题目内容
【题目】已知椭圆的左右焦点分别为,是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线与的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.
【答案】(1);(2)与交点的横坐标为定值2,理由见解析
【解析】
(1)根据题中的条件,写出椭圆的焦点的坐标,利用等腰直角三角形的条件,得出的关系,从而求得其值,从而得出椭圆的方程,得到结果;
(2)设出直线与椭圆的两个交点的坐标,联立方程组,利用韦达定理得到,写出直线的方程:,令,整理得出其横坐标,从而证得其为定值,得到结果.
(1)由已知得,设
是面积为1的等腰直角三角形,
椭圆的方程为
(2)设
得
直线的方程:
令
与交点的横坐标为定值2.
练习册系列答案
相关题目