题目内容
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E、F分别是AB和PC的中点.
(1)求证:AB⊥平面PAD;
(2)求证:EF//平面PAD.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)证明PA⊥AB,AD⊥AB,证得AB⊥平面PAD.
(2)取CD的中点G,由FG是三角形CPD的中位线,可得 FG∥PD,再由矩形的性质得 EG∥AD,证明平面EFG∥平面PAD,从而证得EF∥平面PAD.
(1)∵侧棱PA垂直于底面,∴PA⊥AB.又底面ABCD是矩形,∴AD⊥AB,
这样,AB垂直于平面PAD内的两条相交直线,∴AB⊥平面PAD.
(2)取CD的中点G,∵E、F分别是AB、PC的中点,∴FG是三角形CPD的中位线,
∴FG∥PD,FG∥面PAD.∵底面ABCD是矩形,∴EG∥AD,EG∥平面PAD.
故平面EFG∥平面PAD,∴EF∥平面PAD.
练习册系列答案
相关题目
【题目】随着共享单车的蓬勃发展,越来越多的人将共享单车作为短距离出行的交通工具.为了解不同年龄的人们骑乘单车的情况,某共享单车公司对某区域不同年龄的骑乘者进行了调查,得到数据如下:
年龄 | 15 | 25 | 35 | 45 | 55 | 65 |
骑乘人数 | 95 | 80 | 65 | 40 | 35 | 15 |
(1)求关于的线性回归方程,并估计年龄为40岁人群的骑乘人数;
(2)为了回馈广大骑乘者,该公司在五一当天通过向每位骑乘者的前两次骑乘分别随机派送一张面额为1元,或2元,或3元的骑行券.已知骑行一次获得1元券,2元券,3元券的概率分别是,,,且每次获得骑行券的面额相互独立.若一名骑乘者五一当天使用了两次该公司的共享单车,记该骑乘者当天获得的骑行券面额之和为,求的分布列和数学期望.
参考公式: ,.
参考数据:,.