题目内容
【题目】函数y=f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是 .
【答案】(﹣∞,﹣2]∪[2,+∞)
【解析】解:∵函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,
∴函数y=f(x)在[0,+∞上是减函数,
由偶函数将f(a)≤f(2)等价于f(|a|)≤f(2),
∴|a|≥2,解得a≤﹣2或a≥2,
所以答案是:(﹣∞,﹣2]∪[2,+∞).
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
练习册系列答案
相关题目
【题目】已知函数f(x)与g(x)的图象在R上不间断,由表知函数y=f(x)﹣g(x)在下列区间内一定有零点的是( )
x | ﹣1 | 0 | 1 | 2 | 3 |
f(x) | ﹣0.677 | 3.011 | 5.432 | 5.980 | 7.651 |
g(x) | ﹣0.530 | 3.451 | 4.890 | 5.241 | 6.892 |
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)