题目内容

7.对于R上可导函数f(x),若满足(x-a)f′(x)≥0,则必有(  )
A.?x∈R,f(x)≤f(a)B.?x0∈R,?x∈(-∞,x0),f′(x)>0
C.?x0∈R,?x∈(x0,+∞),f′(x)<0D.?x∈R,f(x)≥f(a)

分析 根据已知题意,解(x-a)f′(x)≥0;然后根据f'(x)的符号判断f(x)的单调性,继而确定最小值,得到f(x)与f(a)的关系

解答 解:根据题意,对于R上可导的任意函数f(x),若满足(x-a)f′(x)≥0
当x≥a时,x-a≥0
∴此时f'(x)≥0
即,当x≥a时,f(x)为增函数.
当x<a时,x-a<0
∴此时f'(x)<0
即,当x<a时,f(x)为减函数.
综上,x=a时,f(x)取最小值f(a)
∴f(x)≥f(a)
故选:D.

点评 本题考查函数的导数与单调性的关系.通过函数的导数,确定单调性,再根据x=a两侧的单调性得出结论.属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网