题目内容
求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程.
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
(1)y2=-
x或x2=
y,前者的准线方程是x=
,后者的准线方程是y=-
.(2)所求抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000396373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000412414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000443327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000443410.png)
(1)设所求抛物线的方程为y2=-2px或x2=2py(p>0).
∵过点(-3,2),∴4=-2p(-3)或9=2p·2.∴p=
或p=
.∴所求抛物线的方程为y2=-
x或x2=
y,前者的准线方程是x=
,后者的准线方程是y=-
.
(2)令x=0得y=-2,令y=0得x=4,∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,
=4,∴p=8,此时抛物线的方程为y2=16x;焦点为(0,-2)时,
=2,∴p=4,此时抛物线的方程为x2=-8y.∴所求抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
∵过点(-3,2),∴4=-2p(-3)或9=2p·2.∴p=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000459382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000474381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000396373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000412414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000443327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000443410.png)
(2)令x=0得y=-2,令y=0得x=4,∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000568422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042000568422.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目