题目内容
求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程.
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
(1)y2=-x或x2=y,前者的准线方程是x=,后者的准线方程是y=-.(2)所求抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
(1)设所求抛物线的方程为y2=-2px或x2=2py(p>0).
∵过点(-3,2),∴4=-2p(-3)或9=2p·2.∴p=或p=.∴所求抛物线的方程为y2=-x或x2=y,前者的准线方程是x=,后者的准线方程是y=-.
(2)令x=0得y=-2,令y=0得x=4,∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,=4,∴p=8,此时抛物线的方程为y2=16x;焦点为(0,-2)时,=2,∴p=4,此时抛物线的方程为x2=-8y.∴所求抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
∵过点(-3,2),∴4=-2p(-3)或9=2p·2.∴p=或p=.∴所求抛物线的方程为y2=-x或x2=y,前者的准线方程是x=,后者的准线方程是y=-.
(2)令x=0得y=-2,令y=0得x=4,∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,=4,∴p=8,此时抛物线的方程为y2=16x;焦点为(0,-2)时,=2,∴p=4,此时抛物线的方程为x2=-8y.∴所求抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
练习册系列答案
相关题目