题目内容
【题目】设两个非零向量 和 不共线.
(1)如果 = + , =2 +8 , =3 ﹣3 ,求证:A、B、D三点共线;
(2)若| |=2,| |=3, 与 的夹角为60°,是否存在实数m,使得m + 与 ﹣ 垂直?并说明理由.
【答案】
(1)证明:∵ = + + =( + )+( )+( )
=6( + )=6
∴ 且 与 有共同起点
∴A、B、D三点共线
(2)解:假设存在实数m,使得m 与 垂直,
则(m )( )=0
∴
∵ =2, =3, 与 的夹角为60°
∴ , ,
∴4m+3(1﹣m)﹣9=0
∴m=6
故存在实数m=6,使得m 与 垂直
【解析】(1)首先利用向量的加法运算,得到 ,然后观察与 的共线关系判断三点共线;(2)假设存在m,利用向量垂直,数量积为0,得到m的方程,解方程即可.
练习册系列答案
相关题目
【题目】【2015高考山东文数】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | ||
未参加演讲社团 |
(1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.