题目内容

【题目】设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤ 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是(
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞,

【答案】C
【解析】解:∵函数f(x)是奇函数,并且在R上为增函数,
∴不等式f(msinθ)+f(1﹣m)>0可化为
f(msinθ)>﹣f(1﹣m)
即f(msinθ)>f(m﹣1)
即msinθ>m﹣1
即m< 在0≤θ≤ 时恒成立
∵0≤θ≤ 时,1﹣sinθ的最大值为1,故 的最小值为1
故m<1
即实数m的取值范围是(﹣∞,1)
故选C
【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网