题目内容

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则 =( )
A.0
B.
C.
D.

【答案】D
【解析】解:∵f(x)=2x﹣cosx,
∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)﹣(cosa1+cosa2+…+cosa5),
∵{an}是公差为 的等差数列,
∴a1+a2+…+a5=5a3 , 由和差化积公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3 ×2)+cos(a3+ ×2)]+[cos(a3 )+cos(a3+ )]+cosa3
=2cos cos +2cos cos +cosa3
=2cosa3 +2cosa3cos(﹣ )+cosa3
=cosa3(1+ + ),
∵f(a1)+f(a2)+…+f(a5)=5π,
∴10a3﹣cosa3(1+ + )=5π,
∴cosa3=0,10a3=5π,
故a3=

2﹣(
2
=
故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网