题目内容
(12分)讨论a,b的取值对一次函数y=ax+b单调性和奇偶性的影响,并画出草图。
略
解析
(本小题满分14分)设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
20.已知函数(1)求函数的极值;(2)设函数若函数在上恰有两个不同零点,求实数 的取值范围.
.已知(,且)(1)求的定义域;(2)判断的奇偶性;
(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
(本小题満分14分)已知上是增函数,在[0,2]上是减函数,且方程有三个根,它们分别为.(1)求c的值;(2)求证;(3)求的取值范围.
(满分16分)记函数f(x)的定义域为D,若存在,使成立,则称以为坐标的点为函数图象上的不动点。(1)若函数的图象上有两个关于原点对称的不动点,求应满足的条件;(2)下述结论“若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明,并举出一例;若不正确,请举出一反例说明
(12分)若函数y=lg(3-4x+x2)的定义域为M,.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.
(本题满分10分)已知是奇函数⑴、求的定义域;⑵、求的值;